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Microservice Era – New requirements for NFs

• Low overhead
• 5G, IoT have limited resources available to be shared among the applications

• Run on commodity Linux servers
• Run the NF as part or all of the large fleet of currently deployed servers

• Allow low-disruption maintenance
• Agile service development
• Re-build and re-deploy a small part of the entire service without disruption

• Coexist with other services on a given server
• No need for dedicated servers that only run a single application
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[1] Katran Facebook Load Balancer: https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/

[2] Cisco, Cloud-native Network Functions - https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-
network-webinars/pdfs/1128_TECHAD_CKN_PDF.pdf

https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1128_TECHAD_CKN_PDF.pdf


User vs Kernel Space Networking

 High throughput and latency
ꓫ High resource consumption

ꓫ Custom kernel modules/drivers
ꓫ Difficult integration with 

“native” applications
X Not yet mature TCP/IP stack
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Alternatives? The extended BPF (eBPF)

• Good candidate to enable customized, fast, 
flexible, dynamic network processing

• So far, mainly used for tracing/monitoring

• Flexible and efficient virtual machine-like 
construct in Linux kernel

• Dynamic injection
• Low-disruption maintenance
• JIT deployment process

• Integration with the kernel subsystem
• Coexist with other services on a given server

• Safety
• Performance

• XDP (eXpress Data Path)

Linux host

User space

Bytecode 
injection 
(@runtime)

eBPF Program BPF Sandbox

Kernel space

Network packets

VM1 VM2

Linux
Routing 

table
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Thesis Goal

• Explore the possibility to use a new technology (eBPF) to build 
network functions suitable for the «cloud-native» environment

1. Comprehensive and in-depth analysis of how eBPF can be used to write 
complex network applications

2. Overcome eBPF limitation with a general framework for in-kernel NFs
3. Validate the framework with the design and implementation of real-world 

applications based on such paradigm

• Looking ahead
4. Dynamic optimization of generic software data planes
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Creating Complex Network 
Functions with eBPF

Advantages and Main Limitations
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Build NFs with eBPF: Limitations

• All that glitters is not gold
• Limitations mainly given by the eBPF controlled environment
• Many of them have been (partially) «solved» over the years

• Several limitations specific for NF processing
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Build NFs with eBPF: Limitations

• Limited program size
• 4096 maximum BPF instructions (130K simulated) for normal users

• Kernel v5.1+ supports 1M simulated instructions for root
• Large programs can easily hit this limit [1]

• Unbounded loops
• Pragma unroll to expand the loop

• Kernel v5.3+ supports bounded loops

• How to handle exceptional cases?

11[1] Alexei Starovoitov, bpf: improve verifier scalability. https://lwn.net/Articles/784571/

https://lwn.net/Articles/784571/


Build NFs with eBPF: Limitations

• eBPF programs are event-driven
• Executed after a packet is received

1. Generate a packet as a consequence of an external event (e.g., a 
timeout)
• Routing protocols, Spanning Tree Protocol (STP)

2. Putting packets on hold
• Cannot stop the execution of a program
• E.g., a router that has to retain a packet while discovering the MAC address of 

the next hop
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Build NFs with eBPF: Lessons Learned
• A lot of advanced features make eBPF a very good candidate for 

running data plane applications, however…
• …creating complex network applications require functionality that 

cannot be achieved given the eBPF restricted sandbox
• Although many limitations are being “solved” by the eBPF community

• We need a solution that allows NF developer to:
• Overcome eBPF limitations
• Simplify the interaction with the eBPF environment
• Provide abstraction typical of NFV that are not available in the general eBPF 

subsystem
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Polycube: a Framework for 
eBPF-based Network Functions

14



Polycube: Goals and Challenges
• Main goal: Enable NFV to the world of in-kernel packet processing

• Myriad of userspace NFV framework (e.g., Netbricks, BESS, OpenBox)
• In-kernel NFV? 

• Goal 1: Common structure and abstractions of in-kernel NFs
• Virtual ports from with traffic is received and sent out
• Support for Control & Data Plane
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Polycube: Structure of Cubes
• Fast path: running in kernel, handling the vast 

majority of packets. E.g., plain forwarding in a 
router.

• Slow path: running in user space, implementing 
complex data plane tasks that are not 
supported by eBPF. E.g., ARP handling in a 
router.

• Control path: implements control and 
management tasks

• Control: out-of-band tasks needed to control the 
dataplane and to react to possible complex events. 
E.g., Routing Protocols, Spanning Tree

• Management: interaction between humans and the 
software, e.g., for configuration, reading statistics
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Polycube: Goals and Challenges
• Main goal: Bring the power and innovation promised by NFV to the 

world of in-kernel packet processing
• Goal 1: Common structure and abstractions of in-kernel NFs

• Virtual ports from with traffic is received and sent out
• Control & Data Plane separation

• Goal 2: Programmable and extensible service chaining
• Multiple in-kernel NF chains
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Polycube: Service Function Chaining
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Polycube: Goals and Challenges
• Main goal: Bring the power and innovation promised by NFV to the 

world of in-kernel packet processing
• Goal 1: Common structure and abstractions of in-kernel NFs

• Virtual ports from with traffic is received and sent out
• Control & Data Plane separation

• Goal 2: Programmable and extensible service chaining
• Multiple in-kernel NF chains

• Goal 3: Simple NF management and execution
• Dynamic loading and update of existing programs

• Goal 4: Simplify development of control and management plane
• Automatic control plane and REST API generation
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Evaluation of Polycube NFs
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K8s Network Plugin Use Case
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• Demonstrate the capability of creating 
complex network applications with 
Polycube

• Several independent Polycube 
services chained together

• Some custom services to implement k8s 
specific functionality

• Full interaction with the Linux 
networking stack e.g., for tunneling 
and security purposes 



Polycube: K8s Plugin Performance
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Polycube: Framework Overheads
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Application Through. LoC (FP) LoC (S/CP)

xdp_redirect 6.97Mpps 64 176

pcn_simplefwd (XDP) 6.86Mpps 53 56

tc_redirect 1.60Mpps 17 0

pcn_simplefwd (TC) 1.55Mpps 17 0



Polycube: Concluding Remarks

• First in-kernel NF framework based on eBPF
• Advantages:

• Cubes can be dynamically injected/updated and optimized
• Extend eBPF programming model with NF specific abstractions and solutions
• Low overhead compared to “vanilla” eBPF
• Performance

• Better performance compared to in-kernel alternatives
• Possibility to create complex in-kernel topologies by combining different services 

together
• K8s Network Plugin
• Bpf-iptables (next slides)
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Bpf-iptables: Accelerating Linux 
Security with eBPF iptables
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Best CCR Paper SIGCOMM 2020



Bpf-iptables: Goal & Challenges

• Main goal: validate the architecture and show the advantages of the 
eBPF-based NF model

• Improve the iptables kernel implementation
• One of the most used software todays

• Speeding up its performance would improve consequentely all the other applications 
that rely on it
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Goal #1: Preserve filtering semantic

• Small of subtle differences could create serious security problems
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Challenge #1: Preserve filtering semantic

• Two (TC_INGRESS/XDP_INGRESS and TC_EGRESS) hooks, which must 
emulate three chains

• No hooks available in eBPF to easily intercept locally terminated/generated 
traffic

• The eBPF code has to process only the packets that would hit each specific 
chain (INPUT, FORWARD, OUTPUT)

• We have to “guess” very early which 
• chain will be hit

• XDP alone is not enough 
(no support for egress traffic)
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Solution #1: Preserve filtering semantic
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• Selects the right chain based on the IP dst/src address in the 
incoming packet (path prediction).

• Selection logic is dynamically configured with all IP addresses 
visible from the root namespace (intercepts NETLINK messages).

Netfilter Netfilter



Goal #2: Improve iptables classification

• Linear search algorithm used by iptables
• Poor performance when lot of rules are used (e.g., k8s)
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Challenge #2: Deal with eBPF limitations

• eBPF constraints for the selection of the algorithm:
• Feasible with available eBPF data structures (maps)
• Possibility to rearrange the code in multiple eBPF programs to overcome the 

limitation of the maximum number of instructions per program

• Linear Bit Vector Search [1] (LBVS)

31
[1]  T. Lakshman and D.Stidialis. High speed policy-based packet forwarding using efficient multi-dimensional range matching. In Proc. 

ACM Sigcomm’98, Sept. 1998



Bpf-iptables: Classification Pipeline
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Goal #3: Support for stateful filters

• Netfilter tracks the state of TCP/UDP/ICMP connections and stores 
them into the Linux conntrack table

• ebpf-iptables is executed before Netfilter
• Packets are classified/dropped before the Linux conntrack is hit

• To support stateful filters, ebpf-iptables has to implement its own 
connection tracking module
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Bpf-iptables: Overall Architecture
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Bpf-iptables: Control/Data Plane Optimizations

• Lot of optimizations can be applied by knowing the structure and type 
of rules installed

• Thanks to the dynamic injection feature of eBPF
• Thanks to the dynamic pipeline substitution of Polycube

• Optimizations:
• Early pipeline break
• Minimum processing pipeline
• HOmogeneous RUleset analySis (HORUS)
• Many others (e.g., accept established, use Linux FIB)
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Bpf-iptables: Optimizations
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Evaluation: Rule Complexity
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Evaluation: Scalability
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Bpf-iptables: Conclusions

• Bpf-iptables demonstrated huge advantages over existing in-kernel 
solutions, in particular when a high number of rules are used

• No custom kernel required (min v4.14+, 4.18+ for some optimizations)

• Performance improvement thanks to control plane optimizations
• Can we apply those optimizations automatically?
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Looking Ahead: 
Automatic Optimizations of 

Software Data Planes
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Observation #1: Performance depend on 
runtime configuration
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20% 
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Observation #1: Performance depend on 
runtime configuration
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20% 
improvement

This is a call for dead code elimination:

Prunes instructions unreachable within the 
runtime configuration



Observation #2: Performance depend on 
runtime table content
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Observation #2: Performance depend on 
runtime table content
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• At any point, many NF features may go unused. 
• May run with empty tables

• Non-appropriate data structures
• Layout
• Size
• Algorithm
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This is a call for data structure 
specialization:

Change match/action table layout and size 
to better fit the current configuration



Observation #3: Performance depend on run-
time traffic patterns

45

• What if we have 100k flows but only the 1% contributes to 99% of the 
traffic?

goto

goto

if !top-5-flows:

Access match/action table

Here the result!

else:



Observation #3: Performance depend on run-
time traffic patterns
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Observation #3: Performance depend on run-
time traffic patterns
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Any help from the literature?
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High-level Architecture
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Preliminary Performance Evaluation
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Conclusions

• So far, validated on eBPF-based (in-kernel) NFs
• Framework is general enough to be applied to DPDK-based NFs

• Optimizations at the IR level
• More fine-grained control of parameters (e.g., batching, pre-fetching) not 

possible with eBPF

• Better understanding of the different configuration parameters and 
how the impact in the overall performance

• E.g., some opts may change «original» performance patterns
• Machine learning to decide right set of optimizations
• Model for NF performance prediction (e.g., Bolt [1])
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[1] Iyer, Rishabh, et al. "Performance contracts for software network functions." 16th {USENIX} Symposium on Networked Systems Design and 
Implementation ({NSDI} 19). 2019.



Concluding Remarks

52



Concluding Remarks

• We have explored the challenges and limitations of a new paradigm 
to build in-kernel packet processing applications with eBPF

• Polycube: a framework that simplify the development and deployment of in-
kernel network services

• Micro-service approach applied to NFs
• Cloud-native friendly

• BPF-iptables: demonstrate the power of the eBPF/Polycube environment and 
programming model to enhance the performance of iptables (one of the most 
used software todays)

• Kecleon: enables the possibility to automatically re-compile a NF (without any 
user intervention) to better fits the surrounding runtime conditions
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