
Rethinking Software Network
Data Planes in the Era of

Microservices
Sebastiano Miano

PhD Final Defense

Politecnico di Torino
July 13th 2020

PhD Advisor
Fulvio Risso

Evolution of end-host applications

Single tasking
applications

Multi tasking
applications

Virtualization

2

Network Function Virtualization

Content Server

DPI

Firewall

L2 SwitchRouter

Traditional Network Appliance
Approach

Network Function Virtualization
Approach

Bridge Router DPI

Firewall Content
Server

Standard Servers

3

Evolution of end-host applications

Single tasking
applications

Multi tasking
applications

Virtualization

Microservices
Containers

4

Microservice Era – New requirements for NFs

• Low overhead
• 5G, IoT have limited resources available to be shared among the applications

• Run on commodity Linux servers
• Run the NF as part or all of the large fleet of currently deployed servers

• Allow low-disruption maintenance
• Agile service development
• Re-build and re-deploy a small part of the entire service without disruption

• Coexist with other services on a given server
• No need for dedicated servers that only run a single application

5

[1] Katran Facebook Load Balancer: https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/

[2] Cisco, Cloud-native Network Functions - https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-
network-webinars/pdfs/1128_TECHAD_CKN_PDF.pdf

https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1128_TECHAD_CKN_PDF.pdf

User vs Kernel Space Networking

 High throughput and latency
ꓫ High resource consumption

ꓫ Custom kernel modules/drivers
ꓫ Difficult integration with

“native” applications
X Not yet mature TCP/IP stack

6

User space

Kernel space

Netmap

Custom Kernel
Module

Network Stack iptables

X Performance
Stable development process

ꓫ Upstreaming code is hard
X Application awareness

Alternatives? The extended BPF (eBPF)

• Good candidate to enable customized, fast,
flexible, dynamic network processing

• So far, mainly used for tracing/monitoring

• Flexible and efficient virtual machine-like
construct in Linux kernel

• Dynamic injection
• Low-disruption maintenance
• JIT deployment process

• Integration with the kernel subsystem
• Coexist with other services on a given server

• Safety
• Performance

• XDP (eXpress Data Path)

Linux host

User space

Bytecode
injection
(@runtime)

eBPF Program BPF Sandbox

Kernel space

Network packets

VM1 VM2

Linux
Routing

table

7

Thesis Goal

• Explore the possibility to use a new technology (eBPF) to build
network functions suitable for the «cloud-native» environment

1. Comprehensive and in-depth analysis of how eBPF can be used to write
complex network applications

2. Overcome eBPF limitation with a general framework for in-kernel NFs
3. Validate the framework with the design and implementation of real-world

applications based on such paradigm

• Looking ahead
4. Dynamic optimization of generic software data planes

8

Creating Complex Network
Functions with eBPF

Advantages and Main Limitations

9

Build NFs with eBPF: Limitations

• All that glitters is not gold
• Limitations mainly given by the eBPF controlled environment
• Many of them have been (partially) «solved» over the years

• Several limitations specific for NF processing

10

Build NFs with eBPF: Limitations

• Limited program size
• 4096 maximum BPF instructions (130K simulated) for normal users

• Kernel v5.1+ supports 1M simulated instructions for root
• Large programs can easily hit this limit [1]

• Unbounded loops
• Pragma unroll to expand the loop

• Kernel v5.3+ supports bounded loops

• How to handle exceptional cases?

11[1] Alexei Starovoitov, bpf: improve verifier scalability. https://lwn.net/Articles/784571/

https://lwn.net/Articles/784571/

Build NFs with eBPF: Limitations

• eBPF programs are event-driven
• Executed after a packet is received

1. Generate a packet as a consequence of an external event (e.g., a
timeout)
• Routing protocols, Spanning Tree Protocol (STP)

2. Putting packets on hold
• Cannot stop the execution of a program
• E.g., a router that has to retain a packet while discovering the MAC address of

the next hop

12

Build NFs with eBPF: Lessons Learned
• A lot of advanced features make eBPF a very good candidate for

running data plane applications, however…
• …creating complex network applications require functionality that

cannot be achieved given the eBPF restricted sandbox
• Although many limitations are being “solved” by the eBPF community

• We need a solution that allows NF developer to:
• Overcome eBPF limitations
• Simplify the interaction with the eBPF environment
• Provide abstraction typical of NFV that are not available in the general eBPF

subsystem

13

Polycube: a Framework for
eBPF-based Network Functions

14

Polycube: Goals and Challenges
• Main goal: Enable NFV to the world of in-kernel packet processing

• Myriad of userspace NFV framework (e.g., Netbricks, BESS, OpenBox)
• In-kernel NFV?

• Goal 1: Common structure and abstractions of in-kernel NFs
• Virtual ports from with traffic is received and sent out
• Support for Control & Data Plane

15

Polycube: Structure of Cubes
• Fast path: running in kernel, handling the vast

majority of packets. E.g., plain forwarding in a
router.

• Slow path: running in user space, implementing
complex data plane tasks that are not
supported by eBPF. E.g., ARP handling in a
router.

• Control path: implements control and
management tasks

• Control: out-of-band tasks needed to control the
dataplane and to react to possible complex events.
E.g., Routing Protocols, Spanning Tree

• Management: interaction between humans and the
software, e.g., for configuration, reading statistics

16

Network function (e.g., “router”)

Network packets

Data plane

Control plane

Fast path

Slow path

Control path

Add new route

Show routing table

Handle ARP
request/reply

Forward IP
packets

Polycube: Goals and Challenges
• Main goal: Bring the power and innovation promised by NFV to the

world of in-kernel packet processing
• Goal 1: Common structure and abstractions of in-kernel NFs

• Virtual ports from with traffic is received and sent out
• Control & Data Plane separation

• Goal 2: Programmable and extensible service chaining
• Multiple in-kernel NF chains

17

Polycube: Service Function Chaining

18

netdev1

Tail call

Map Lookup

Map Update

Function Call

IDX METADATA

0 vport = 1
...

vport = 1
module_idx = 11

Input (netdev1)
br1pre

processor
post

processor

ForwardChain

PORT VPORT-MODULE_IDX

0 0 - 10 (r1)

1 N.D. - 1 (ndev1)

Bridge

Output (netdev1)

bpf_redirect(if_idx)

IDX METADATA

0 vport = 0
...

r1pre post

Router

MOD_IDX eBPF PROG ADDR

1 0x001F (output ndev1)

10 0x0010 (router r1)

11 0x0011 (bridge br1)

PatchPanel (global)

Polycube: Goals and Challenges
• Main goal: Bring the power and innovation promised by NFV to the

world of in-kernel packet processing
• Goal 1: Common structure and abstractions of in-kernel NFs

• Virtual ports from with traffic is received and sent out
• Control & Data Plane separation

• Goal 2: Programmable and extensible service chaining
• Multiple in-kernel NF chains

• Goal 3: Simple NF management and execution
• Dynamic loading and update of existing programs

• Goal 4: Simplify development of control and management plane
• Automatic control plane and REST API generation

19

Evaluation of Polycube NFs

20

K8s Network Plugin Use Case

21

• Demonstrate the capability of creating
complex network applications with
Polycube

• Several independent Polycube
services chained together

• Some custom services to implement k8s
specific functionality

• Full interaction with the Linux
networking stack e.g., for tunneling
and security purposes

Polycube: K8s Plugin Performance

22

Polycube: Framework Overheads

23

Application Through. LoC (FP) LoC (S/CP)

xdp_redirect 6.97Mpps 64 176

pcn_simplefwd (XDP) 6.86Mpps 53 56

tc_redirect 1.60Mpps 17 0

pcn_simplefwd (TC) 1.55Mpps 17 0

Polycube: Concluding Remarks

• First in-kernel NF framework based on eBPF
• Advantages:

• Cubes can be dynamically injected/updated and optimized
• Extend eBPF programming model with NF specific abstractions and solutions
• Low overhead compared to “vanilla” eBPF
• Performance

• Better performance compared to in-kernel alternatives
• Possibility to create complex in-kernel topologies by combining different services

together
• K8s Network Plugin
• Bpf-iptables (next slides)

24

Bpf-iptables: Accelerating Linux
Security with eBPF iptables

25

Best CCR Paper SIGCOMM 2020

Bpf-iptables: Goal & Challenges

• Main goal: validate the architecture and show the advantages of the
eBPF-based NF model

• Improve the iptables kernel implementation
• One of the most used software todays

• Speeding up its performance would improve consequentely all the other applications
that rely on it

26

Goal #1: Preserve filtering semantic

• Small of subtle differences could create serious security problems

27

Challenge #1: Preserve filtering semantic

• Two (TC_INGRESS/XDP_INGRESS and TC_EGRESS) hooks, which must
emulate three chains

• No hooks available in eBPF to easily intercept locally terminated/generated
traffic

• The eBPF code has to process only the packets that would hit each specific
chain (INPUT, FORWARD, OUTPUT)

• We have to “guess” very early which
• chain will be hit

• XDP alone is not enough
(no support for egress traffic)

28

Solution #1: Preserve filtering semantic

29

From netdev
(e.g., eth0)

Ingress Chain
Selector

Egress Chain
Selector

INGRESS
CHAIN

FORWARD
CHAIN

OUTPUT
CHAIN

To netdev
(e.g., eth1)

[local dst]

TC/XDP
Ingress hook

TC
Egress hook

[local src]

To Linux
Stack

[remote src]

From Linux
Stack

• Selects the right chain based on the IP dst/src address in the
incoming packet (path prediction).

• Selection logic is dynamically configured with all IP addresses
visible from the root namespace (intercepts NETLINK messages).

Netfilter Netfilter

Goal #2: Improve iptables classification

• Linear search algorithm used by iptables
• Poor performance when lot of rules are used (e.g., k8s)

30

Challenge #2: Deal with eBPF limitations

• eBPF constraints for the selection of the algorithm:
• Feasible with available eBPF data structures (maps)
• Possibility to rearrange the code in multiple eBPF programs to overcome the

limitation of the maximum number of instructions per program

• Linear Bit Vector Search [1] (LBVS)

31
[1] T. Lakshman and D.Stidialis. High speed policy-based packet forwarding using efficient multi-dimensional range matching. In Proc.

ACM Sigcomm’98, Sept. 1998

Bpf-iptables: Classification Pipeline

32

…

eBPF program #1

Packet

ip.src
lookup

tmp_bitv
&=

bitvN;

[percpu_array shared across the entire bpf-iptables pipeline]

* bitv1
1.* bitv2
12.0.* bitv3
5.4.2.* bitv4

eBPF program #2

port.dst
lookup

tmp_bitv
&=

bitvN;

443 bitv1
8080 bitv2
9673 bitv3ta

il
ca

ll

Action Lookup

Search first
matching

rule

ACTION
(drop /
accept)

rule1 act1
rule2 act2
rule3 act3

Map keeping the
action for each rule

[Packet]

[percpu_array shared across the entire classification pipeline]

Packet metadata

eBPF program #3

tcp.flags
lookup

tmp_bitv
&=

bitvN;

0000000 bitv1
0000001 bitv2
0000010 bitv3
………………… bitv4
………………… bitv5

ta
il

ca
ll

ta
il

ca
ll

Bitvector with temporary result

BPF_LPM_TRIE BPF_HASH BPF_ARRAY

* bitvW

BPF_ARRAY

Goal #3: Support for stateful filters

• Netfilter tracks the state of TCP/UDP/ICMP connections and stores
them into the Linux conntrack table

• ebpf-iptables is executed before Netfilter
• Packets are classified/dropped before the Linux conntrack is hit

• To support stateful filters, ebpf-iptables has to implement its own
connection tracking module

33

Bpf-iptables: Overall Architecture

Ingress pipeline

From netdev
(e.g., eth0)

To netdev
(e.g., eth1)

TC egress hookTo Linux
TCP/IP stack

From Linux
TCP/IP stack

Netfilter Netfilter

XD
P

in
gr

es
s

ho
ok

IP
 in

pu
t gn issec orp IP

 o
ut

pu
t

pr
oc

es
sin

g

FIB
Lookup

Header
Parser

Ingress Chain
Selector

INGRESS
CHAIN

FORWARD
CHAIN

[local dst] Conntrack
Update

Conntrack
Update[remote dst]

Conntrack
Label

Headers Des�natio n
Chain

Flow State Flow StateHeader, Flow
State, etc…

Packet metadata (per-CPU map shared across the en�re pipeline)

Redirect
program

Redirect
program

Conntrack
Table

Lookup
Lookup
failed

Update

Egress pipeline

Header
Parser

Egress Chain
Selector

OUTPUT
CHAIN

[local src] Conntrack
Update

Conntrack
Label

Headers Des�natio n
Chain

Flow StateHeader, Flow
State, etc…

[remote src]

Lookup

Packet metadata (per-CPU map shared across the en�re pipeline)

TC ingress hook

Redirect
program

34

Bpf-iptables: Control/Data Plane Optimizations

• Lot of optimizations can be applied by knowing the structure and type
of rules installed

• Thanks to the dynamic injection feature of eBPF
• Thanks to the dynamic pipeline substitution of Polycube

• Optimizations:
• Early pipeline break
• Minimum processing pipeline
• HOmogeneous RUleset analySis (HORUS)
• Many others (e.g., accept established, use Linux FIB)

35

Bpf-iptables: Optimizations

36

…

eBPF program #1

Packet

ip.src
lookup

tmp_bitv
&=

bitvN;

[percpu_array shared across the entire bpf-iptables pipeline]

* bitv1
1.* bitv2
12.0.* bitv3
5.4.2.* bitv4

eBPF program #2

port.dst
lookup

tmp_bitv
&=

bitvN;

443 bitv1
8080 bitv2
9673 bitv3ta

il
ca

ll

Action Lookup

Search first
matching

rule

ACTION
(drop /
accept)

rule1 act1
rule2 act2
rule3 act3

Map keeping the
action for each rule

[Packet]

[percpu_array shared across the entire classification pipeline]

Packet metadata

eBPF program #3

tcp.flags
lookup

tmp_bitv
&=

bitvN;

0000000 bitv1
0000001 bitv2
0000010 bitv3
………………… bitv4
………………… bitv5

ta
il

ca
ll

ta
il

ca
ll

Bitvector with temporary result

BPF_LPM_TRIE BPF_HASH BPF_ARRAY

* bitvW

BPF_ARRAY

If bitvN
== 0;

DROP;

Evaluation: Rule Complexity

37

UDP Throughput
(Single core)

UDP Throughput
(Multi 14 core)

Evaluation: Scalability

38

UDP
Throughput

TCP
Throughput

Bpf-iptables: Conclusions

• Bpf-iptables demonstrated huge advantages over existing in-kernel
solutions, in particular when a high number of rules are used

• No custom kernel required (min v4.14+, 4.18+ for some optimizations)

• Performance improvement thanks to control plane optimizations
• Can we apply those optimizations automatically?

39

Looking Ahead:
Automatic Optimizations of

Software Data Planes

40

Observation #1: Performance depend on
runtime configuration

41

20%
improvement

Observation #1: Performance depend on
runtime configuration

42

20%
improvement

This is a call for dead code elimination:

Prunes instructions unreachable within the
runtime configuration

Observation #2: Performance depend on
runtime table content

43

• At any point, many NF features may go unused.
• May run with empty tables

• Non-appropriate data structures
• Layout
• Size
• Algorithm

0

0.5

1

1.5

2

2.5

3

3.5

Th
ro

ug
hp

ut
 (M

pp
s)

LPM Large Hash Table+LPM Small Hash Table+LPM

Observation #2: Performance depend on
runtime table content

44

• At any point, many NF features may go unused.
• May run with empty tables

• Non-appropriate data structures
• Layout
• Size
• Algorithm

0

0.5

1

1.5

2

2.5

3

3.5

Th
ro

ug
hp

ut
 (M

pp
s)

LPM Large Hash Table+LPM Small Hash Table+LPM

This is a call for data structure
specialization:

Change match/action table layout and size
to better fit the current configuration

Observation #3: Performance depend on run-
time traffic patterns

45

• What if we have 100k flows but only the 1% contributes to 99% of the
traffic?

goto

goto

if !top-5-flows:

Access match/action table

Here the result!

else:

Observation #3: Performance depend on run-
time traffic patterns

46

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

Th
ro

ug
hp

ut
 (M

pp
s)

Original Cached computation

Observation #3: Performance depend on run-
time traffic patterns

47

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

Th
ro

ug
hp

ut
 (M

pp
s)

Original Cached computation

This is a call for cached computation

Caches the most accessed entries
within the code itself.

Any help from the literature?

48

High-level Architecture

49

Preliminary Performance Evaluation

50

Conclusions

• So far, validated on eBPF-based (in-kernel) NFs
• Framework is general enough to be applied to DPDK-based NFs

• Optimizations at the IR level
• More fine-grained control of parameters (e.g., batching, pre-fetching) not

possible with eBPF

• Better understanding of the different configuration parameters and
how the impact in the overall performance

• E.g., some opts may change «original» performance patterns
• Machine learning to decide right set of optimizations
• Model for NF performance prediction (e.g., Bolt [1])

51
[1] Iyer, Rishabh, et al. "Performance contracts for software network functions." 16th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 19). 2019.

Concluding Remarks

52

Concluding Remarks

• We have explored the challenges and limitations of a new paradigm
to build in-kernel packet processing applications with eBPF

• Polycube: a framework that simplify the development and deployment of in-
kernel network services

• Micro-service approach applied to NFs
• Cloud-native friendly

• BPF-iptables: demonstrate the power of the eBPF/Polycube environment and
programming model to enhance the performance of iptables (one of the most
used software todays)

• Kecleon: enables the possibility to automatically re-compile a NF (without any
user intervention) to better fits the surrounding runtime conditions

53

Publications
• Journals

• Miano, Sebastiano; Bertrone, Matteo; Risso, Fulvio; Vasquez Bernal, Mauricio; Lu, Yunsong; Pi, J.
Securing Linux with a Faster and Scalable Iptables
In: ACM SIGCOMM Computer Communication Review, Volume 49, Issue 3 (Best CCR Paper SIGCOMM 2020)

• Miano, Sebastiano; Doriguzzi-Corin, Roberto; Risso, Fulvio; Siracusa, Domenico; Sommese, Raffaele
Introducing SmartNICs in Server-Based Data Plane Processing: The DDoS Mitigation Use Case
In: IEEE Access, Volume 7

• Miano, Sebastiano; Risso, Fulvio
Transforming a Traditional Home Gateway into a Hardware-accelerated SDN Switch
In: International Journal of Electrical and Computer Engineering (IJECE)

• Conferences
• Miano, Sebastiano; Risso, Fulvio

A Micro-service Approach for Cloud-Native Network Services
In: ACM Symposium on SDN Research (SOSR) Demo, Santa Clara (CA)

• Miano, Sebastiano; Bertrone, Matteo; Risso, Fulvio; Vasquez Bernal, Mauricio; Lu, Y.; Pi, J.; Shaikh, A.
A Service-Agnostic Software Framework for Fast and Efficient In-Kernel Network Services
In: 15th ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)

• Miano, Sebastiano; Bertrone, Matteo; Risso, Fulvio; Tumulo, Massimo; Vasquez Bernal, Mauricio.
Creating Complex Network Services with eBPF: Experience and Lessons Learned
In: 19th IEEE International Conference on High Performance Switching and Routing (HPSR), Bucharest (RO)

• Bertrone, Matteo; Miano, Sebastiano; Risso, Fulvio; Tumulo, Massimo.
Accelerating Linux with eBPF Iptables
In: ACM SIGCOMM 2018 Conference Posters and Demos, Budapest (H)

• Bertrone, Matteo; Miano, Sebastiano; Pi, Jianwen; Risso, Fulvio; Tumolo, Massimo.
Toward an eBPF-based clone of iptables
In: Netdev 0x12, The Technical Conference on Linux Networking, Montréal (Canada)

• Miano, Sebastiano; Risso, Fulvio; Woesner, Hagen.
Partial offloading of OpenFlow rules on a traditional hardware switch ASIC
In: 3rd IEEE Conference on Network Softwarization (NetSoft), Bologna (IT)

• Bonafiglia, Roberto; Miano, Sebastiano; Nuccio, Sergio; Risso, Fulvio; Sapio, Amedeo.
Enabling NFV Services on Resource-Constrained CPEs
In: 5th IEEE Conference on Cloud Networking (CloudNet), Pisa (IT)

54

55

	Rethinking Software Network �Data Planes in the Era of Microservices
	Evolution of end-host applications
	Network Function Virtualization
	Evolution of end-host applications
	Microservice Era – New requirements for NFs
	User vs Kernel Space Networking
	Alternatives? The extended BPF (eBPF)
	Thesis Goal
	Creating Complex Network Functions with eBPF
	Build NFs with eBPF: Limitations
	Build NFs with eBPF: Limitations
	Build NFs with eBPF: Limitations
	Build NFs with eBPF: Lessons Learned
	Polycube: a Framework for �eBPF-based Network Functions
	Polycube: Goals and Challenges
	Polycube: Structure of Cubes
	Polycube: Goals and Challenges
	Polycube: Service Function Chaining
	Polycube: Goals and Challenges
	Evaluation of Polycube NFs
	K8s Network Plugin Use Case
	Polycube: K8s Plugin Performance
	Polycube: Framework Overheads
	Polycube: Concluding Remarks
	Bpf-iptables: Accelerating Linux Security with eBPF iptables
	Bpf-iptables: Goal & Challenges
	Goal #1: Preserve filtering semantic
	Challenge #1: Preserve filtering semantic
	Solution #1: Preserve filtering semantic
	Goal #2: Improve iptables classification
	Challenge #2: Deal with eBPF limitations
	Bpf-iptables: Classification Pipeline
	Goal #3: Support for stateful filters
	Bpf-iptables: Overall Architecture
	Bpf-iptables: Control/Data Plane Optimizations
	Bpf-iptables: Optimizations
	Evaluation: Rule Complexity
	Evaluation: Scalability
	Bpf-iptables: Conclusions
	Looking Ahead: �Automatic Optimizations of Software Data Planes
	Observation #1: Performance depend on runtime configuration
	Observation #1: Performance depend on runtime configuration
	Observation #2: Performance depend on runtime table content
	Observation #2: Performance depend on runtime table content
	Observation #3: Performance depend on run-time traffic patterns
	Observation #3: Performance depend on run-time traffic patterns
	Observation #3: Performance depend on run-time traffic patterns
	Any help from the literature?
	High-level Architecture
	Preliminary Performance Evaluation
	Conclusions
	Concluding Remarks
	Concluding Remarks
	Publications
	Slide Number 55

